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Abstract

A common cause of failure in structure-from-motion
(SfM) is misregistration of images due to visual patterns
that occur in more than one scene location. Most work to
solve this problem ignores image matches that are inconsis-
tent according to the statistics of the tracks graph, but these
methods often need to be tuned for each dataset and can
lead to reduced completeness of normally good reconstruc-
tions when valid matches are removed. Our key idea is to
address ambiguity directly in the reconstruction process by
using only a subset of reliable matches to determine resec-
tioning order and the initial pose. We also introduce a new
measure of similarity that adjusts the influence of feature
matches based on their track length. We show this improves
reconstruction robustness for two state-of-the-art SfM algo-
rithms on many diverse datasets.

1. Introduction
The modern incremental Structure from Motion (SfM)

approach was developed to meet the challenge of recon-
structing landmarks from Internet photos [33, 32, 28],
where the goal is to correctly register most of the photos.
Now, SfM is widely used to model buildings, bridges, and
cities for inspection and maintenance [1, 3, 4]. SfM al-
gorithms face new challenges in these applications due to
more stringent completeness and correctness requirements
and the prevalence of incorrect feature matches on repeated
or symmetric structures, such as signs, windows, and archi-
tectural patterns, that lead to unregistered or misregistered
photographs (Fig. 1). Failure in SfM is costly, requiring la-
borious manual corrections or traveling back to the site to
take more photographs.

In this paper, we propose techniques to improve robust-
ness to incorrect matches in incremental SfM. Consider
Fig. 2. Robust fitting methods [12] and outlier checks fail
to discard the many incorrect matches on two different Oats
containers in images 1 and 6 because the matches agree on
an incorrect relative pose. Existing approaches to deal with
this problem, such as trying to prune bad matches in the
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Figure 1. Symmetry and repetition cause many incorrect matches
in this image pair, which causes misregistrations in current SfM
systems (e.g. [2]). Our method successfully reconstructs the scene
by scoring reliability of image matches and basing resectioning
order and pose initialization on the most reliably matching images.

tracks graph, are not widely used due to their complexity or
brittleness. Our approach is to instead keep all matches and
focus on fixing the reconstruction steps that are corrupted
by bad matches: (1) choosing the next image to add (“re-
sectioning”); and (2) initializing the pose estimate based on
currently reconstructed points. Suppose the reconstruction
in Fig. 2 initially contains images 1-3. Given the 458 robust
matches (that passed RANSAC verification), image 6 looks
like a good candidate to resection next, but doing so will
cause a misregistration. Our first key insight is that “long
tracks” (features that match across many images) are more
likely to be due to repeated structures than short tracks.
Long tracks can be good for precise triangulation, but they
are less trustworthy than short tracks for resectioning for a
simple reason: features on duplicate structures match across
more images than features on unique structures because, by
definition, duplicate structures appear more often. There-
fore, we give shorter tracks more weight when determining
the reliability of matches between two images, and resec-
tion the image that has the most reliable matches with a
reconstructed image. Even if image 6 is resectioned last,
the many consistent but incorrect matches with images 1-
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Figure 2. Top: Example tracks are shown on six images from the “oats” scene. Long tracks (yellow, blue) are more likely to contain
incorrect matches to duplicate structures than short ones (purple) because duplicate structures appear more often. Thus, we give shorter
tracks more weight in determining match reliability and resection order, and initialize pose using reconstructed points from the most
reliably matching images. Bottom: Tracks are colored by length. Both pairs of images have many robust matches (RANSAC inliers) on
the duplicate Oats container, but the correctly matching pair on left also has many short tracks on the unique Wheat Thins box, causing its
AAM score to be much higher than the incorrect pair on right.

3 could cause pose to be incorrectly initialized in robust
PnP [19], causing outlier checks to discard the true matches
to images 4 and 5. Our second key insight is to initialize
pose based only on the reconstructed points that are ob-
served by the most reliable image matches. After pose is
initialized, all reconstructed points that pass outlier checks
are used to refine the pose. Together, these two key ideas
– to give short tracks more weight in determining resec-
tion order and to initialize pose using only the most reliable
matches – lead to correct reconstruction of this scene. To
be clear, we still employ long tracks in pose estimation and
triangulation, we simply weigh them less when determining
match reliability between images.

Our experiments show that our proposed techniques lead
to dramatically better robustness in dozens of tabletop [25]
and hallway [10] scenes selected for their challenges of du-
plicate structures. To show that our method works on amor-
phous capture patterns, we also show promising results on
internet scenes [15] (see supplemental material). We also
demonstrate improvements on a standard multiview stereo
(MVS) dataset [17] in terms of SfM and MVS outputs. The
generality of our ideas is further demonstrated by showing
that our modified resection order and pose estimation steps
improve both the OpenSfM [2] and COLMAP [28] systems,
which are two of the most widely used SfM systems. 1

In summary, the contributions of this paper are: (1) Im-
proved resection ordering that gives more weight to matches
that are part of shorter tracks; (2) Improved initial pose es-
timation that uses only points reconstructed from reliably
matching images to initialize pose before using all recon-
structed points to refine pose; and (3) Experiments with two
state-of-the-art SfM systems on more than 30 image sets
that quantitatively and qualitatively validate the effective-
ness and generality of our approach.

1https://github.com/rajkataria/ReliableResectioning

2. Related Work
Incremental Structure from Motion: The pipeline of

feature extraction, feature matching, and incremental SfM
for wide baseline, unordered images was first established
by Schaffalitzky and Zisserman [27] and Snavely et al. [33].
Images are iteratively added to the reconstruction using the
correspondences to triangulated points to estimate each new
pose (called “resectioning”). In this paper, we address two
aspects of resectioning: (1) the initial pose estimation of
each new image; and (2) the order in which images are re-
sectioned. Although many works (e.g. Agarwal et al. [5, 6],
Frahm et al. [13], and Wu et al. [38]) focus on improving
bundle adjustment or forms of RANSAC (e.g. Wetzel et
al. [35] and Raguram et al. [24]) to improve camera lo-
calization, no works to our knowledge consider the initial
pose estimation step in resectioning, which is typically per-
formed by solving the Perspective-n-Point(PnP) [19] prob-
lem with RANSAC based on all observations of recon-
structed points. Our approach modifies this by relying only
on reconstructed points from images that reliably match the
resectioned image, which we show in Sec. 4 leads to signif-
icantly improved results.

For resection order, the original approach of [27, 33] has
remained popular (e.g., [38, 2]) — to choose the next im-
age that observes the maximum number of reconstructed 3D
points in the current reconstruction. Haner et al. [14] mod-
ify this method to account for the uncertainties of 3D point
positions. More recently, Schönberger and Frahm [28],
for the COLMAP system, use a pyramid-weighting scheme
to give higher preference for spatially distributed observa-
tions. These approaches, despite being robust to some in-
correct matches, fail in the presence of large duplicate struc-
tures mainly due to their inability to disambiguate. DeGol
et al. [10] show using fiducial markers for disambiguation
to improve the resectioning order (without other changes)
leads to better reconstructions. Rather than relying on fidu-



cial markers, which are often not available, our method de-
termines whether two images are likely to match based on
our proposed ambiguity-adjusted match score. Our ablation
study shows that our proposed change to resection order im-
proves performance when integrated into both COLMAP
and OpenSfM systems.

There is extensive research in next best view planning
(e.g. Chen et al. [8], Dunn et al. [11], Bircher et al. [7],
Kriegel et al. [18], and Mendoza et al. [22]), but most of this
work focuses on robotics applications where the robot can
move to capture the next image. In resectioning, we choose
from a collection of already captured images. Our method
does not apply to GlobalSfM approaches, which do not have
a resectioning step. Our method also does not apply to the
progressive pipeline proposed by Locher et al. [20] which
addresses the problem of online reconstruction.

Disambiguation: Work in disambiguation specifically
addresses incorrect matches and registration due to repeated
structures in scenes. One approach tries to catch geometric
inconsistencies due to confusion of repeated structures dur-
ing reconstruction. For example, Zach et al. [40] enforce
loop consistency (i.e. chained transformations along a cy-
cle should yield an identity transformation). Shen et al. [31]
extend this approach by checking first, second, and third or-
der triplet loops for consistency. Roberts et al. [25] take
a different approach by using an expectation-maximization
framework to cluster matches that are inconsistent with the
geometric constraints defined by the majority of matches.
Heinly et al. [15] post-process the reconstruction looking
for 3D points that conflict in their spatial location when
projected into pairs of registered images. Cohen et al. [9]
use appearance and geometric cues to detect symmetries
and impose them as constraints during bundle adjustment.
Other approaches analyze the tracks graph for inconsisten-
cies. For example, Wilson et al. [36] prune out bad tracks
using the bipartite local clustering coefficient as an indicator
of noisy tracks. Yan et al. [39] attempt to tease out the cap-
ture path by exploiting the geodesic relationship of photo
collections. Shah et al. [30] prune observations from the
tracks graph using a min-cost network flow problem.

Most of the disambiguation approaches [31, 36, 39, 30]
use a set of heuristics and carefully tuned parameters, which
are usually adjusted based on the characteristics of the scene
and, as we show in Section 4, do not generalize well to
scenes with low levels of ambiguities. For example, Shah
et al. [30] requires a different set of features to model a
general scene while Yan et al. [39] and Wilson et al. [36]
require parameters to be tuned based on the size and statis-
tics of the scene. Shen et al. [31] rejects outliers based on
a preset threshold and would also require tuning. In con-
trast, our approach addresses the problem of repeated struc-
tures directly in the reconstruction process, which prevents
discarding potential matches too early and does not require
dataset-specific parameter tuning.

Image Retrieval: Visual burstiness, a phenomenon in

Algorithm 1: Structure-from-Motion Overview
Input : Set of Images

1 Extract feature points on each image
2 Match pairs of images using RANSAC to obtain pairs of

corresponding features
3 Create tracks graph using sets of corresponding features
4 Reconstruct one pair of images to initialize reconstruction
5 do
6 Select next resection candidate Inext

7 Estimate initial pose for Inext

8 if resection is successful then
9 Add Inext to the reconstruction

10 Triangulate tracks in reconstruction
11 Bundle adjust to optimize camera params and 3D points
12 end
13 until no images can be added;

Output: Camera parameters for each image and 3D points

which visual words co-occur in the same spatial configu-
ration, is analogous to disambiguation in the SfM litera-
ture. Jegou et al. [16] and Sattler et al. [26] address this
by weighting the features using idf and feature descriptor
similarities. These weighting schemes relate to our simi-
larity measure, AAM, which downweights features that are
observed in many images (long track lengths).

3. Method
Section 3.1 provides context for our contributions with

an overview of incremental SfM. In Sec. 3.2, we describe
our method to determine resection order including our
ambiguity-adjusted match score. In Sec. 3.3, we describe
our method to intialize pose when an image is resectioned.

3.1. Incremental Structure from Motion Overview
Algorithm 1 outlines the steps of an incremental Struc-

ture from Motion (SfM) algorithm. The blue text in the
algorithm box highlights the two steps our paper addresses:
(1) selecting the next resection candidate Inext (often re-
ferred to as resectioning order), and (2) estimating the initial
pose of the resection candidate Inext.

Incremental SfM takes a set of images as input. For
each image, feature points (i.e. points and feature descrip-
tors from SIFT [21]) are detected (line 1). Then these
feature points are matched for each image pair (line 2).
These image pairs can be exhaustive or filtered using Vocab
Trees [34], GPS, etc. Only matches that are inliers accord-
ing to a model, such as the fundamental or essential matrix,
are retained, and RANSAC [12] is used to jointly estimate
the model and inlier matches. We call these inlier matches
“robust matches”. Next, the feature matches across image
pairs are connected to form tracks (line 3). A “track” is
a set of features that are transitively matched and thought
to be generated by a single 3D scene point. For example,
features matched across (image 1, image 2) and (image 2,
image 3) can be connected into a feature track (image 1,
image 2, image 3), as illustrated in Fig. 2. The tracks graph



encodes which tracks are observed by which features and
images. We call an “observation” a feature in an image that
is part of a track. At this point, the reconstruction process
begins. First, an initial pair is chosen to begin the recon-
struction (line 4). Matches between this initial pair are used
to estimate the relative positions of these two images, and
an initial set of 3D points is triangulated.

The iterative process of adding images to the reconstruc-
tion now begins (line 5-13). Within each iteration, the first
step is to choose which image should be added next (line
6). One common approach is to select the next image to re-
section Inext as the image that observes the most 3D points
in the current reconstruction (e.g., [2]). An alternative is
the approach of COLMAP [28] which weights the images
by the spatial distribution of feature tracks (giving prefer-
ence to more spread out distributions) to encourage more
stable pose estimates. We introduce another alternative in
Section 3.2 that provides robustness to structured outliers.

Once the image is chosen, the next step is to estimate
an initial pose for Inext (line 7). This is done by solv-
ing the PnP [19] problem in a RANSAC loop and refining
the solution by minimizing the reprojection error using the
Levenberg-Marquardt algorithm. Typically, this step uses
all common tracks between Inext and the reconstruction.
We propose an alternative approach in Section 3.3 that can
improve robustness in cases where there are strong matches
to images from different parts of the scene. If the initial
pose estimation succeeds, the image is added to the recon-
struction (line 9), and new 3D points are triangulated from
tracks with two reconstructed images (line 10). An incorrect
registration can occur if Inext has matches to two different
parts of the scene due to a repeated structure. In this case,
the pose of Inext may be initialized based on a large num-
ber of incorrect matches to the wrong part of the scene, and
the correct matches are later discarded in outlier checks be-
cause they are inconsistent with the initial pose. This leads
to inaccurate and/or incomplete reconstructions.

Finally, bundle adjustment is run (line 11) to refine the
poses of all cameras and 3D points by minimizing the re-
projection error of all the observations in all the images of
the reconstruction. This process continues until no further
images can be added. The final output is a set of camera
poses and 3D points.

3.2. Resectioning Order

To determine resection order, we need to estimate
whether the pose of an image is likely to be correctly es-
timated based on reconstructed points. It is common to
choose the image that has the most tracks in common with
the reconstruction, but this can cause problems due to re-
peating structures, as shown in Fig. 2. Long tracks are more
likely to be due to duplicate structures because more images
observe a repeated pattern than a unique pattern. Fig. 3 (top)
quantifies this phenomenon, in terms of the probability of
track length for good versus bad image matches.

9

8

Figure 3. Top: The log odds ratio of the track distributions for
matching images over non-matching images for all 6 scenes in
the Duplicate Structures dataset[25]. Ground truth image matches
were labeled manually. Matching images have a significantly
higher distribution of short tracks while non-matching images
have a higher distribution of long tracks. Bottom: This plot
shows the mean Precision-Recall curves for the 6 scenes in the
Duplicate Structures[25] dataset. Our proposed similarity mea-
sure, ambiguity-adjusted matches, is better at discriminating false
image matches compared to the number of robust matches.

Therefore, we propose an ambiguity-adjusted
match (AAM) similarity measure that assigns more
weight to matches in short tracks, corresponding to visual
patterns observed by few images:

SAAM (i, j) =
∑

tk∈Tij

γ|tk|−2 (1)

where |tk| is the length of a track that includes observations
from the ith and jth images. In all experiments, we set the
discount factor γ to 0.5. Fig. 3 (bottom) shows that our
AAM score better predicts whether two images correctly
match than the unweighted number of robust matches.

We determine the next image to resection as the image
that is the most similar to any image in the reconstruction:

Inext = argmax
c

(
max

r
SAAM (c ∈ C, r ∈ R)

)
(2)

where C is the set of all candidate images, R is the set of
all reconstructed images, and SAAM (c, r) is the ambiguity-
adjusted match similarity between images c and r. We con-
firmed experimentally that resectioning based on the most
similar image tends to outperform aggregating similarity to
all reconstructed images.

3.3. Local Pose Initialization
Typically, SfM approaches estimate pose of the selected

candidate image using all triangulated points that are ob-



served by the candidate image. To reduce the influence of
incorrect track matches, we use a local pose initialization
approach that uses reconstructed points from only reliable
images to estimate pose. First, we obtain the similarity
value (smax) between the resectioned image and the most
similar reconstructed image (similarity criteria can be ro-
bust matches or SAAM ) where smax = max

r
S(Inext, r ∈

R). Second, we use smax to select additional similar recon-
structed images. Points generated using images that have a
similarity value greater than τ ∗ smax will be used for pose
initialization as shown in Equation 3.

Rreliable = {r ∈ R : S(Inext, r) > smax · τ} (3)

R is the set of all images in the reconstruction and Rreliable

is the set of reliable images for Inext. We use τ = 0.5 in all
our experiments.

The pose for Inext is initialized using the reconstructed
points in common with Rreliable using RANSAC and PnP.
Next, all reconstructed points observed by Inext are pro-
jected onto Inext, and observations with high reprojection
error are pruned. Finally, the pose of Inext is refined using
gradient descent to minimize reprojection error using all re-
constructed points that correspond to inlier observations.

4. Experiments
We describe the datasets, performance measures, base

SfM systems, and implementation details in Section 4.1.
We compare results with our full approach to the base sys-
tems in Sec. 4.2, evaluate on the downstream task of multi-
view stereo in Sec. 4.3, compare to other disambiguation
approaches in Sec. 4.4, and perform ablations in Sec. 4.5.

4.1. Experimental Setup
Our goal is to evaluate whether: (1) our proposed ideas

to modify resection order and initial pose estimation lead to
better performance in image sets that depict repeated struc-
tures; and (2) the improvements are general enough to pro-
vide good performance on varied image sets for different
SfM systems. Using 29 image sets, we provide qualitative
and quantitative evaluation of reconstructions, evaluation of
downstream task performance, and controlled experiments
with two SfM systems.

Datasets: Our main experiments are performed on three
datasets: the Duplicate Structure dataset [25], the UIUCTag
dataset [10], and the Tanks and Temples dataset [17]. The
first two contain a total of 22 image sets that test robustness
to repeated structures, such as nearly identical consumer
goods in [25] and exit signs, posters, and architectural de-
tails in [10]. We also use the seven training image sets from
Tanks and Temples to evaluate more general scenes. We do
not train or tune parameters on any of these datasets.

In the supplemental material, we show the efficacy of our
system on several challenging unstructured internet datasets
of Heinly et al. [15]. Since these datasets have no ground

truth or a discernable capture pattern, we provide qualitative
results and identify misregistrations for comparison.

Measures: Typically, SfM papers [15, 36, 39] report
only the number of registered images and points recon-
structed and reprojection error, but these metrics are eas-
ily gamed by manipulating outlier checks or sampling fea-
tures more densely. We visually verify whether a recon-
struction has large misregistrations, which is easy for our
selected datasets due to the regular capture patterns (e.g.,
see Fig. 5). For correct reconstructions, we evaluate com-
pleteness by the percent of images and of observations that
are reconstructed. The percent of observations is the percent
of detected/matched features that have low reprojection er-
ror after reconstruction. We use percent observations rather
than number of reconstructed points to avoid overcounting
due to splitting tracks into multiple points. As a summary
of performance, we categorize the reconstruction outcomes
into: “success” if it is complete (at least 90% of images reg-
istered) and has no major misregistrations; “partial” if 30%
to 90% of images are registered and there are no major mis-
registrations; and “failure” if there are misregistrations or
fewer than 30% of images registered. Additionally, for the
Tanks and Temples dataset we quantitatively evaluate the
precision-recall performance of a multiview stereo (MVS)
reconstruction using COLMAP MVS [29].

Base SfM Systems: Our method addresses the re-
sectioning part of the SfM pipeline and requires a com-
plete system for testing. We choose OpenSfM (v0.2.0) [2]
and COLMAP [28] (v3.4) as base systems because they
are actively developed, open source, state-of-the-art sys-
tems. Except where otherwise noted, we use default pa-
rameters. We perform most ablations and comparisons with
OpenSfM, and use COLMAP to demonstrate general appli-
cability. Our method substantially improves both systems
for scenes with high levels of ambiguities while performing
at least as well as base systems for more general scenes.

Implementation Details: For speed, we use vocabu-
lary trees [34, 23] to get match candidates for both systems.
For OpenSfM, we employ the efficient bundle adjustment
strategy of VisualSfM [38]. Since OpenSfM uses the entire
tracks graph for refining the initial pose, we remove obser-
vations with high reprojection error after initial pose estima-
tion. This modification is not needed for COLMAP because
it already uses only inliers for pose refinement. Our method
has two parameters (γ = 0.5 and τ = 0.5) which were
set prior to the experiments and never tuned for our test
datasets. γ is chosen based on probability of a match being
erroneous in the presence of duplicate structures, while τ is
chosen to yield a small but sufficient neighborhood for lo-
cal pose estimation (ideally 2-4 strongly matching images).
The computation of image similarities (AAM), resection or-
der, and selection of images for pose estimation have neg-
ligible compute cost, and the resulting more reliable initial
pose estimates sometimes reduce the time spent in bundle
adjustment. The mean speed increase of reconstruction (not



Images OpenSfM[2] OOS COLMAP [28] OCM

%R %O %R %O %R %O %R %O

Books 21 7 7 100 85 7 7 100 80
Cereal 25 7 7 100 82 7 7 100 68
Cup 64 7 7 100 74 7 7 7 7
Desk 31 7 7 100 91 7 7 100 78
Oats 23 7 7 100 74 7 7 7 7
Street 19 7 7 100 63 7 7 100 55

ece floor2 hall 74 7 7 96 68 96 37 95 36
ece floor3 loop 362 7 7 100 72 7 7 83 35
ece floor3 loop ccw 192 7 7 99 75 7 7 7 7
ece floor3 loop cw 170 7 7 100 77 7 7 100 51
ece floor5 239 7 7 7 7 90 35 87 39
ece floor5 stairs 328 7 7 94 64 79 33 80 33
ece floor5 wall 39 44 37 97 90 7 7 7 7
ece stairs 89 7 7 100 90 73 31 100 52
yeh day all 252 98 63 100 82 94 48 7 7
yeh day atrium 37 100 71 100 69 100 43 97 44
yeh day backward 120 7 7 100 88 92 55 90 55
yeh day forward 63 75 55 98 86 7 7 27 20
yeh night all 170 7 7 7 7 7 7 7 7
yeh night atrium 41 100 81 100 85 98 50 93 47
yeh night backward 79 100 66 7 7 91 47 90 46
yeh night forward 96 73 51 100 88 7 7 100 56

Barn 410 100 72 100 84 100 67 100 67
Caterpillar 383 7 7 100 81 100 67 100 67
Church 507 7 7 7 7 100 78 100 78
Courthouse 1106 7 7 100 76 7 7 100 75
Ignatius 263 100 60 100 82 100 72 100 72
Meetingroom 371 7 7 100 73 100 61 100 61
Truck 251 100 51 100 72 100 67 100 67

OSfM CM
Ours
(OSfM)

Ours
(CM)

Table 1. We apply our approach to improve OpenSfM[2] and COLMAP[28], labeled OOS and OCM respectively. %R and %O indicate
the percentage of images and observations reconstructed and “7” indicates a failed reconstruction. Bars on the right show the number
of success (green), partial (orange), and failure (red) cases for each method and dataset. Our method improves both SfM systems for all
datasets without any parameter tuning.

counting matching) is 25% with the OpenSfM system. See
the supplemental material for more details.

4.2. Overall Results

Fig. 1 shows per dataset results, comparing the base sys-
tems OpenSfM and COLMAP to the modified systems with
our proposed resectioning approach. The three sections,
from top to bottom, correspond to the Repeated Structures
dataset, the UIUCTag dataset, and Tanks and Temples. The
ideal result is to have 100% of images registered for each
scene (%R) and a high percentage of observations recon-
structed (%O). On the right, we summarize performance
with bar charts showing the fraction of “success” (green),
“partial” (orange), and “failure” (red) reconstructions in
each dataset. Reconstructions with noticeable misregistra-
tions are failures, and the %R and %O are not shown for
failures, since some are incorrect.

Our approach improves both SfM systems for all
datasets: For all three datasets, the inclusion of our ap-
proach in both OpenSfM and COLMAP provides a sig-
nificant boost in successful reconstructions. Notably,
for the Duplicate Structures dataset (extreme ambiguity),
our approach using ambiguity-adjusted matches improves
OpenSfM from 0/6 to 6/6 and COLMAP from 0/6 to 4/6
successful reconstructions. Performance for UIUCTags and
Tanks and Temples also improves in both systems, with
larger improvement in OpenSfM. Overall, our method leads
to OpenSfM improving from 7 to 25 successful reconstruc-
tions in these 29 challenging scenes. Our method improves
COLMAP from 13 to 19 successful reconstructions.

Fig. 5 shows examples of scenes with mismatched im-
ages (first column). While the base SfM systems were un-
able to achieve good reconstructions (second column), our
improved resectioning order and local pose initialization
lead to correct reconstructions (last column). Our supple-
mental material includes additional qualitative results.

4.3. Evaluation on Multi-View Stereo

To quantitatively assess the accuracy of the generated re-
constructions, we employ the estimated camera poses in the
downstream task of multi-view stereo (MVS). The Tanks
and Temples [17] dataset provides ground-truth laser scans
for their training scenes. We run the COLMAP MVS [29]
pipeline using poses generated from the OpenSfM [2] and
COLMAP [28] SfM pipelines with and without our pro-
posed improvements. We use default MVS parameters. We
use the benchmark’s code to compute accuracy (precision)
and completeness (recall) of the generated dense models af-
ter aligning the reconstructed and ground truth point clouds.
Results are in Table 2.

For the OpenSfM [2] pipeline, the baseline system was
unable to produce a dense model for 4/7 scenes while our
method produced a dense model for all scenes (though
“Church” has misregistrations). The improvements ob-
tained using our method matched our qualitative inspection
of SfM output for all scenes except “Barn”, where the mod-
els produced by baseline and our method look nearly iden-
tical, but our method has lower precision and recall, likely
due to a slight misregistration in part of the model that is dif-
ficult to perceive (see supplemental material for views of the



OpenSfM[2] OOS COLMAP [28] OCM

P R F P R F P R F P R F

Barn 0.49 0.61 0.55 0.33 0.46 0.38 0.41 0.55 0.47 0.43 0.56 0.49
Caterpillar 7 7 7 0.40 0.68 0.51 0.39 0.65 0.49 0.40 0.65 0.50
Church 7 7 7 0.25 0.16 0.19 0.53 0.43 0.48 0.53 0.44 0.48
Courthouse 7 7 7 0.16 0.34 0.22 0.31 0.43 0.36 0.36 0.56 0.44
Ignatius 0.67 0.74 0.70 0.61 0.79 0.69 0.72 0.82 0.77 0.73 0.83 0.77
Meetingroom 7 7 7 0.41 0.32 0.36 0.42 0.31 0.35 0.42 0.31 0.36
Truck 0.62 0.73 0.67 0.63 0.74 0.68 0.60 0.70 0.65 0.61 0.70 0.65

Mean 0.25 0.30 0.27 0.40 0.5 0.43 0.48 0.56 0.51 0.5 0.58 0.53

Table 2. The metrics used to compare the MVS model are Precision(P), Recall(R), and F1-score(F). The baseline OpenSfM pipeline fails to
produce a model for 4/7 scenes (marked with “7” and considered to be 0 precision and recall), while our method (OOS) produces a dense
model for all scenes. For COLMAP[28], our method (OCM) produces a better model for Courthouse as indicated by the higher Precision,
Recall, and F1-score while producing comparable models for the remaining scenes.

MVS results). For the COLMAP [28] pipeline, the baseline
system and our method produced comparable results for 6
of 7 scenes. For “Courthouse”, our method significantly
outperformed the baseline.

4.4. Comparison to Disambiguation Methods
We compare our modified OpenSfM against two recent

disambiguation approaches: Wilson et al. [36] and Yan et
al. [39]. For each method, we use code provided by the
authors to modify the tracks graph and otherwise use the
OpenSfM system for reconstruction. For Yan et al. [39],
we set the Score and Coverage parameters to 0.3 and 0.8,
respectively, for small scenes (≤ 60 images) and to 0.07 and
0.6, respectively, for large scenes (> 60 images), following
their recommendations. For [36], we leave the parameters
unchanged from their default values.

Fig. 4 shows that we greatly outperform other disam-
biguation methods when applied to the same OpenSfM base
system. Our method successfully reconstructs 25 scenes (of
29), compared to 9 succcesses for Yan et al. [39] and 4 suc-
cesses for Wilson et al. [37]. Yan et al. sometimes produce
a higher percentage of reconstructed observations than our
method because they are able to salvage subsets of erro-
neous tracks. Wilson et al. achieves its best performance
on larger scenes because it requires long tracks to analyze
the tracks graph. The main failing of these methods is that
their strategy to prune the tracks graph can either yield par-
tial reconstructions, if too aggressive, or misregistrations, if
not aggressive enough. While it might be possible to find
parameters for each specific scene that yield better results,
scene-specific tuning is not practical. Pruning the tracks
graph based on our AAM similarity metric provides sim-
ilar results to these methods (see supplemental material).
Our improvements to initial pose estimation take advantage
of structural knowledge without making decisions too early
that risk failure and without requiring data-specific tuning.

4.5. Ablation Study
In Fig. 4, we display results of evaluating the impact of

individual components of our method. “w/o Ambiguity-
adjusted matches” means that unweighted matches are used
as the similarity measure, instead of AAM. “w/o Local re-
sectioning order” means that the order is based on the num-
ber of reconstructed tracks in common with an image, in-
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Figure 4. Top: Summary of performance for our method (first
column) and two disambiguation approaches Wilson et al. [36]
(second column), and Yan et al. [39] (third column) on the three
datasets. Our method outperforms the others on each dataset.
Bottom: Summary of reconstruction results with ablations. The
bars for each dataset represent(from left to right): OpenSfM,
Our OpenSfM (OOS), OOS w/o ambiguity adjust matches, OOS
w/o local resectioning order, OOS w/o local pose estimation,
COLMAP, Our COLMAP (OCM), and OCM w/o AAM. Local
Pose Estimation has a large positive impact on results across all
three datasets. Local Resectioning Order and AAM have a positive
impact on results when repeated structures are present.

stead of the most similar image in reconstruction according
to AAM. “w/o Local pose estimation” means that the initial
pose estimate is based on all observed reconstructed points,
rather than only the points that are also observed by the most
reliable (according to AAM) images.

Local Pose Estimation has the biggest impact. Com-
paring OOS (our method in OpenSfM) to OOS w/o Local
Pose Estimation across all three datasets shows that perfor-
mance suffers when Local Pose Estimation is not used (from
25/29 successes to 6/29 successes). This indicates that Lo-
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Figure 5. Qualitative results for: Cereal, Cup, ece floor3 loop ccw, ece stairs, Caterpillar, and Meetingroom. The first column shows a
pair of erroneously matching images. The second and third columns show the reconstructions (red frustra for camera locations) from the
base OpenSfM [2] system and after modification with our approach. Bad matches like these cause misregistrations in the baseline, while
our system’s local pose estimation ignores the displayed incorrect matches in local pose estimation, leading to correct reconstructions.

cal Pose Estimation is useful across the range of extreme
duplicate structure to minimal duplicate structure.

Local Resectioning Order helps with duplicate struc-
ture. OOS w/o Local Resectioning Order performs worse
than OOS for the Duplicate Structures and the UIUCTag
datasets (from total 19/22 successes to 15/22 successes),
but performs better for Tanks and Temples (one more suc-
cess). This shows that Local Resectioning order is benefi-
cial for scenes with moderate to high prevalence of dupli-
cate structures but may not be advantageous for scenes that
have different challenges.

Ambiguity Adjusted Matches helps overcome ex-
treme duplicate structure. For both OOS and OCM, the
removal of ambiguity adjusted matches (AAM) decreases
the number of successful reconstructions on the Duplicate
Structures dataset (6/6 to 3/6 and 4/6 to 1/6 respectively).
This matches our intuition that AAM is particularly impor-
tant when visually dominant textures are repeated (e.g. the
Oats container from Fig. 2).

5. Conclusion
Our new method addresses the matching problem in in-

cremental SfM caused by duplicate structures. We deter-
mine a neighborhood of reliable images using an ambiguity-
adjusted similarity measure and use these images to deter-
mine resectioning order and initial pose estimates. Our ap-
proach does not require dataset-dependent parameters, in
contrast to existing disambiguation methods. Results show
that our method improves two state-of-the-art SfM systems,
producing more complete and accurate scene reconstruc-
tions, and outperforming recent disambiguation methods.
Our method is easy to implement, reduces runtime, applies
to any incremental SfM system, and improves reconstruc-
tion results for a wide variety of challenging scenes.
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